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Collection of Global Ground-based PM2.5 measurements 

Satellite-derived and simulated global PM2.5 concentrations require validation against 

surface measurements.  We combine values from numerous sources for the purpose of 

comparison.  We use European data from a combination of the European Monitoring and 

Evaluation Programme (EMEP; http://www.emep.int/) and the European Air quality 

dataBase (AIRBASE; http://air-climate.eionet.europa.eu/databases/airbase/).  Australian 

data were collected from the Environment Protection and Heritage Council 

(http://www.ephc.gov.au/).  New Zealand data were collected from the New Zealand 

Ministry for the Environment website (http://www.mfe.govt.nz/).  Mexican data are from 

the ESCALA project (Gouveia et al. 2008; Romieu et al. 2009).  Columbian data were 

provided by Victor Miranda and Isabelle Romieu and from the Instituto de Hidrologia 

Meteorologia y Estudios Ambientales (www.ideam.gov.co).  Some Brazilian data for Sao 

Paulo are from the secretary of State for the Environment, Sao Paulo 

(http://www.cetesb.sp.gov.br/).  Chilean data were provided by CENMA, the Chilean 

National Environment Center (http://www.cenma.cl/).  Additional sources are described 

in Table S-1.  We exclude sites from all sources that are suspected to be spatially or 

temporally biased. 

We combine measurements onto the same 0.1º × 0.1º grid as the satellite dataset.  We 

average colocated studies/sites, weighted by the product of their temporal range (years) 

and number of monitors (to a maximum of 5), such that long-term, multi-monitor studies 

have greater influence on final comparison values.  Any surface PM2.5 grid cell with an 

overall weight of less than 1 monitor-year is considered unrepresentative and is not used 

for evaluation of satellite-derived PM2.5. 
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Description of the GEOS-Chem model 

We use v8-01-04 of the GEOS-Chem chemical transport model 

(http://acmg.seas.harvard.edu/geos/index.html).  The GEOS-Chem model is driven by 

assimilated meteorology from the Goddard Earth Observing System (GEOS-4) at the 

NASA Global Modeling Assimilation Office (GMAO).   Our simulation is run at 2º × 

2.5º with 42 vertical levels ranging between the surface and approximately 80 km.  The 

thickness of the lower layer is approximately 100 meters.  The model timestep for 

transport is 15 minutes. 

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium system (Park 

et al. 2006), primary (Park et al. 2003) and secondary (Liao et al. 2007) carbonaceous 

aerosols, mineral dust (Fairlie et al. 2007) and sea-salt (Alexander et al. 2005).  

Formation of sulfate and nitrate (Park et al. 2004), heterogeneous chemistry (Jacob 2000) 

and photolysis rates (Martin et al. 2003) are all coupled with oxidant simulation.  Dry and 

wet deposition are described in Liu et al. (2001), and include both washout and rainout.  

The emission inventory has been recently updated to 2005, following van Donkelaar et 

al. (2008).  We use the eight day Global Fire Emission Database version 2 (GFEDv2) 

biomass burning emissions (van der Werf et al. 2006), as implemented by Nassar et al. 

(2009). 

The GEOS-Chem aerosol simulation has been extensively evaluated with ground-based 

measurements (e.g. Park et al. 2006; Fairlie et al. 2007; Pye et al. in press) and aircraft 

measurements (e.g. Heald et al. 2005; van Donkelaar et al. 2008; Dunlea et al. 2009). 
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Description of Satellite Retrievals 

The MODIS instrument provides near-daily global AOD coverage in the absence of 

clouds.  The MODIS AOD retrieval algorithm over land (Levy et al. 2007) applies three 

spectral bands at 0.47 µm, 0.66 µm and 2.1 µm plus those used for cloud masking, and 

requires that surface-reflected radiation makes little contribution to total radiation leaving 

the top of the atmosphere.  Dark surfaces are first detected using the infrared (2.1 µm) 

spectral band, where atmospheric absorption and scattering from aerosols is generally 

weak.  Surface reflection at visible wavelengths (0.47 µm and 0.66 µm) is then estimated 

through specified relationships with the 2.1 µm reflectivity.  Pre-computed seasonally 

and spatially varying lookup tables (LUT) that combine likely aerosol scenarios with 

surface reflectivities are then matched with top-of-atmosphere observations to determine 

AOD values representing 10 km × 10 km retrieval regions.  Quality assured collection 

(version) 5 MODIS AOD over land has been validated such that at least two-thirds of 

retrievals are within ±(0.05 + 15%) using Aerosol Robotic Network (AERONET, Holben 

et al. 1998) measurements of AOD (Remer et al. 2008).  The ratio of two spectral bands 

is used estimate the contribution of non-dust (fine) aerosol to total AOD, but this product 

is highly uncertain (Remer et al. 2005), especially over land, where it is considered an 

algorithm diagnostic rather than a retrieval quantity (Anderson et al. 2005; Levy et al. 

2009) . 

The MODIS BRDF/Albedo product (MOD43 V5, Lucht et al. 2000) estimates 16-day 

average land surface albedo through an algorithm that is separate from the surface 

reflectivity estimate used by the MODIS AOD retrieval.  Albedo, the hemispheric 
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integration of directional surface reflectance, is separated into black-sky and white-sky 

albedo, where these refer to the albedo under purely direct and diffuse conditions, 

respectively.  The true albedo varies between these two extremes. 

The MISR instrument observes radiation leaving the top of the atmosphere in four 

spectral bands (0.446, 0.558, 0.672 and 0.866 µm), each at nine viewing angles (±70.5º, 

±60.0º, ±45.6º, ±25.1º and nadir).  MISR takes 9 days for complete global coverage at the 

equator, and two days near the poles, in the absence of clouds.  The MISR AOD retrieval 

algorithm (Martonchik et al. 2002; Diner et al. 2005; Martonchik et al. 2009) uses same-

scene, multi-angle, multi-spectral observations to infer AOD and aerosol microphysical 

property information over 18 km × 18 km retrieval regions, assuming only approximate 

spectral invariance of the surface angular reflectance, via pre-calculated LUTs.  MISR 

AOD has been validated such that two-thirds of retrievals fall within the maximum of 

±(0.05 or 20%) of ground truth observations (Kahn et al. 2005).  The MISR aerosol 

product also provides estimates of AOD contribution according to aerosol size, dividing 

AOD into the fraction of particles of radius < 0.35 µm, between 0.35-0.7 µm and > 0.7 

µm.  The aerosol-size retrieval is most reliable when AOD is greater than 0.2 (Kahn et al. 

2009). 

We explored using satellite retrievals of aerosol fine mode fraction (FMF) in lieu of the 

GEOS-Chem simulation of this quantity in the calculation of η, but found that simulated 

FMF was more accurate for our application due to retrieval uncertainties, temporal 

coverage and consistency of fine mode definition.  We determine FMF from the GEOS-

Chem simulation as the ratio of fine AOD (sulfate, organic carbon, black carbon, and fine 

dust and fine sea salt) to total AOD (fine AOD + coarse dust and coarse sea salt). 
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Combining MODIS and MISR observations 

Here we describe our approach to combine AOD retrievals from both MODIS and MISR.  

We translate daily AOD measurements between Jan. 1 2001 and Dec. 31 2006 from 

MODIS level 2, version 5, best quality and MISR level 2 (F09_0017-F11_0021, best 

estimate) onto a global 0.1º × 0.1º grid.  MODIS AOD retrievals exhibit a high bias over 

deserts and coastal sites due to surface brightness and subpixel water contamination 

(Abdou et al. 2005) partially explaining the poor agreement between MODIS AOD and 

surface PM2.5 observed the western United States (e.g. Engel-Cox et al. 2004; Liu et al. 

2007; Hu 2009).  Systematic regional differences between MODIS and MISR AOD are 

also found over north-central Africa, northern India and Bangladesh, and the Patagonia 

Desert region of South America (Kahn et al. 2009). 

We use the MODIS BRDF/Albedo product to distinguish surface types and identify 

regional error in AOD retrieval.  Two ratios of six-year monthly mean black-sky albedo 

(0.47 µm / 0.66 µm and 0.66 µm / 2.1 µm) are used to divide the Earth’s surface into nine 

albedo-based domains, as defined by the combinations of each ratio being < 0.4, 0.4 - 0.6, 

and > 0.6.  Four surface types dominate, as shown for July in the top panel of Figure S-1.  

MODIS and MISR AOD are then compared against ground-based retrievals of AOD 

from the AERONET to calculate an average monthly bias for each instrument within 

each domain.  Local AERONET comparisons are combined according to surface type.  

We reject all satellite AOD retrievals with a local estimated monthly bias in excess of the 

maximum of ±(0.1 or 20%).  Data from regions that cannot be confirmed to be within 

these bounds are rejected.  Nearby AERONET sites are weighted more heavily in the 
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comparison to allow more representative measurements to dominate the filtration 

process.  The bottom row of Figure S-1 compares unfiltered satellite and AERONET 

AOD by zone for all months.  MODIS AOD over zone 2 (470/660: >0.6; 660/2100: 0.4-

0.6) and zone 9 (470/660: >0.6; 660/2100: >0.6) show more scatter than other zones.  

Figure S-2 shows the total number of months included from each instrument after this 

filtration process.  MODIS AOD are frequently rejected over bright surfaces, such as 

deserts, and are more heavily filtered than MISR.  Regions with few months are more 

susceptible to sampling bias as discussed in the main text.  Fortunately most of the 

regions with poor seasonal sampling tend to have low population. 

To reduce the influence of large particles, we also exclude individual MODIS and MISR 

AOD with less than 20% fine mode fraction based upon their respective retrievals of this 

quantity.  The albedo-filtered, fine-mode-filtered AOD from MODIS and MISR are 

averaged to produce daily of AOD at 0.1º × 0.1º. 

 

Comparison of GEOS-Chem vertical structure with CALIPSO measurements 

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

satellite has been providing aerosol backscatter and extinction profiles from orbit since 

June 2006 (Vaughan et al. 2004).  Extinction profiles obtained from CALIPSO are 

presently unvalidated, beta-quality products.  This dataset, however, is the most complete 

measurement-based representation of global aerosol profiles currently available and a 

valuable source of information for the validation of simulated vertical profiles and their 
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impact on satellite-derived PM2.5.  We therefore compare simulated and measured AOD 

relative vertical profiles from GEOS-Chem and CALIPSO. 

Figure S-3 shows average relative vertical profiles from CALIPSO for various land 

regions, for June-December 2006, the period of overlap with GEOS-4 meteorological 

fields.  The fraction of AOD within the simulated lower mixed layer ranges from about 

30% over Europe to 50% over North Africa.  This represents a lower bound for fully 

sampled mean conditions, as profiles taken during high pollution events are unlikely to 

reach the ground due to attenuation of the CALIPSO beam.  Figure S-3 also shows the 

mean of coincidently sampled profiles from the GEOS-Chem simulation.  Simulated and 

retrieved profiles are consistent.  The largest regional differences occur at approximately 

5 km.  The fraction of AOD in the mixed layer typically differ by less than 5%, with the 

exception of South America and Polynesia, where this difference is within 15%.  There 

are concerns about an error in the CALIPSO data below 800 m (Ray Hoff, personal 

communication).  Differences in the mixed layer fraction of simulated and observed 

AOD remain within the above percentages when excluding these values. 

 

Comparison of simulated and satellite-derived PM2.5 

Of interest is whether the satellite-derived PM2.5 improves over the GEOS-Chem 

simulation of PM2.5.  Table S-2 compares satellite-derived and simulated PM2.5 with 

ground-based PM2.5 over North America and the rest of the world.  PM2.5 data are 

sampled coincidently over North America.  Annual average measurements are used for 

the rest of the world.  The slope between ground-based measurements and satellite-
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derived PM2.5 at 0.1º × 0.1º is consistently nearer to unity as compared to the simulation.  

The bias is also smaller between the satellite-data and ground-based measurements.  

Much of the global improvement in slope is driven by the finer resolution of satellite-

derived PM2.5 (0.86 for 0.1º × 0.1º versus 0.59 for 2º × 2.5º), but correlation is higher 

with the satellite product than for the simulation regardless (satellite-derived: 0.75-0.83 

versus simulated: 0.63).  By contrast, coarse resolution comparisons over western North 

America have an improved slope relative to simulation (0.83 versus 0.49), but a poorer 

correlation than at 0.1º × 0.1º (0.67 versus 0.53). 

Figure S-4 shows global coincidently sampled satellite-derived and simulated PM2.5 at 

the simulation resolution of 2º × 2.5º.  Both PM2.5 estimates agree with each other (r = 

0.77), with major enhancements associated with dust, biomass burning and industrial 

activities.  The magnitude of the concentrations, however, have pronounced differences.  

Simulated values of PM2.5 over the Sahara exceed satellite-derived estimates by 20-150 

µg/m3.  Satellite-derived PM2.5 deviate from simulated concentrations over east Asia and 

northern India by as much as 30 µg/m3.  Satellite-derived PM2.5 over Mexico has an 

enhancement of 5-10 µg/m3 relative to simulation  The large population present in the 

latter three regions make differences of particular epidemiological significance and may 

indicate regional bias in current emission inventories. 
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Table S-1: Additional PM2.5 surface measurements used for comparison and their combined values.  Source indicates all sources used to 
determine location value. 

City/Site Country 

In-situ 
PM2.5 

(µg/m3)

Satellite-
derived 
PM2.5 

(µg/m3) Lat Lon Study Period 
Number of 
Stations Source 

LIVERPOOL AUSTRALIA 8.2 5 -33.9º 150.9º 2002-
2005;2005;2005 1;1;1 

(Hopke et al. 2008);Environment 
Protection and Heritage 
Council ;Environment Protection and 
Heritage Council 

LUCAS HEIGHTS AUSTRALIA 5.7 3.1 -34º 151º 2002-2005;2005 1;1 (Hopke et al. 2008);Environment 
Protection and Heritage Council 

DHAKA BANGLADESH 33.7 23.9 23.8º 90.4º 2000-2003;2005 1;1;1 (Begum et al. 2006); (Begum et al. 2008)
DHAKA BANGLADESH 28.7 26.2 23.7º 90.4º 2002-2005  (Hopke et al. 2008) 

CUIABA BRAZIL 10.5 10.7 -15.6º -56.1º Jul 1991 - Feb 
1993 1 (Artaxo et al. 1994) 

RIO DE JANEIRO BRAZIL 17 7.1 -22.9º -43.1º Oct 1998 - Sep 
1999 1 (Mariani and de Mello 2007) 

RIO DE JANEIRO BRAZIL 10 5 -22.9º -43.4º Sept 2003 - Sept 
2004 10 (Soluri et al. 2007) 

SAO PAULO BRAZIL 22.6 8.8 -23.5º -46.5º Jul 1997-March 
1998 2 (Castanho and Artaxo 2001) 

SERRA DO NAVIO BRAZIL 9.9 6.4 1º -52º Nov 1991 - Apr 
1993 1 (Artaxo et al. 1994) 

BANGKOK CHINA 36.6 23.6 13. 8º 100.5º 2001-2004;Feb 
2002 - Jan 2003 1;3 (Oanh et al. 2006);(Chuersuwan et al. 

2008) 

BEIJING CHINA 114.1 97.3 39.9º 116.4º
Aug 2001-Sep 

2002;2000;2001-
2004 

2;5;1 (Duan et al. 2006);(Zheng et al. 
2005);(Oanh et al. 2006) 

BEIJING CHINA 121 99.6 39.8º 116.5º Jul 1999- Sep 2000 2 (He et al. 2001) 
BEIJING CHINA 35.6 96.1 39.9º 116.3º 2002-2004 1 (Hopke et al. 2008) 
BEIJING CHINA 127.5 97 39.9º 116.5º unknown 8 (Zhang et al. 2009) 
BEIJING CHINA 87.7 90.4 39.9º 116.3º 2005-2007 1 (Zhao et al. 2009) 
BEIJING CHINA 54.2 29.6 40.6º 117.1º 2005-2007 1 (Zhao et al. 2009) 

BEIJING-SUBURBAN CHINA 42.1 87.2 39.7º 116º 2003-2004 1 (Hopke et al. 2008) 
GUANGZHOU CHINA 97.3 79.3 23.1º 113.1º unknown 2 (Zhang et al. 2009) 

HONG KONG CHINA 42.8 45.4 22.3º 114.2º
Nov 2000-Feb 
2001; Jun-Aug 

2001 
2 (Ho et al. 2006) 

HONG KONG CHINA 47.4 44.5 25.2º 115.1º unknown 2 (Zhang et al. 2009) 
SHANGHAI CHINA 92.9 95.8 31.3º 121.3º 2005-2006 2 (Feng et al. 2009) 
SHANGHAI CHINA 59.6 65.9 31.2º 121.5º 1999 2 (Ye et al. 2003) 
SHANGHAI CHINA 78.6 98.1 31.1º 121.3º unknown 3 (Zhang et al. 2009) 



CAIRO EGYPT 67.4 51.8 30º 31.4º Fall/Winter 1999 
Summer 2002 3 (Abu-Allaban et al. 2007) 

CAIRO EGYPT 79.3 41.6 30º 31.3º 2001-2002 14 (Zakey et al. 2008) 

CHENNAI INDIA 42.2 18 13.1º 80.3º 2001-2004;2002-
2003 1;1 (Oanh et al. 2006);(Kumar and Joseph 

2006) 

DELHI INDIA 97 56.8 28.4º 77.1º Mar 2001 - Jan 
2002;Jul-Dec 2003 1;1;113 (The World Bank 2004); (Chowdhury 

2004);(Kumar et al. 2007) 

KOLKATA INDIA 107.8 26.2 18.7º 72.8º Mar 2001 - Jan 
2002 1;1 (The World Bank 2004); (Chowdhury 

2004) 

MUMBAI INDIA 43 26.2 19º 72.8º Apr 2003- Mar 
2004 1 (Kumar et al. 2007) 

MUMBAI INDIA 40.5 23 19.1º 72.9º 2002-2005 1 (Hopke et al. 2008) 

MUMBAI INDIA 52.5 38.8 22.6º 88.3º Mar 2001 - Jan 
2002 1;1 (The World Bank 2004); (Chowdhury 

2004) 
NAVI MUMBAI (VASHI) INDIA 44 26.2 18.8º 73º Annual 1 (Kothai et al. 2008) 

BANDUNG INDONESIA 29.2 16.8 -6.5º 107.4º 2001-2004;2002-
2005 1;1 (Oanh et al. 2006);(Hopke et al. 2008) 

LEMBANG INDONESIA 12.9 19.6 -6.2º 107.2º 2002-2005; 1 (Hopke et al. 2008) 
TOKYO JAPAN 23 23.2 35.7º 139.7º 2001-2004 1 (Minoura et al. 2006) 

DAEJEON KOREA 10.8 20.3 36.4º 127.4º 2002-2005 1 (Hopke et al. 2008) 
SEOUL KOREA 44.3 30 37.4º 126.8º 2002-2004 2 (Kim et al. 2006) 
SEOUL KOREA 37.2 39.5 37.6º 126º 2005-2006 1 (Park et al. 2008) 

KUWAIT KUWAIT 38 37.5 29.3º 48º Feb 2004 - Jul 
2005 3 (Brown et al. 2008) 

BEIRUT LEBANON 35.5 24 33.9º 35.5º 
Feb-May 

2003;2004;Feb 
2004-Jan 2005 

1;1;1 
(Sheehan and Bowman 
2001);(Kouyoumdjian and Saliba 
2006);(Saliba et al. 2007) 

KUALA LUMPUR MALAYSIA 29.3 17.1 3.2º 101.7º 2005 1 (Hopke et al. 2008) 
KATHMANDU VALLEY NEPAL 30.7 22.8 27.7º 85.5º Dec 1998-Oct 2000 2 (Carrico et al. 2003) 

CABAUW NETHERLANDS 18.2 19.1 52º 4.9º Aug 2006 - May 
2007 1 (Schaap et al. 2008) 

ISLAMABAD PAKISTAN 14.4 30.8 33.7º 73.3º 2002-2004 1 (Hopke et al. 2008) 

ATENEO DE MANILLA PHILIPPINES 35.3 15.9 14.6º 121.1º
2002-2005;2001-
2004;Apr - Dec 

2001 
1;1;1 (Hopke et al. 2008);(Oanh et al. 

2006);(Cohen et al. 2002) 

SINGAPORE SINGAPORE 27.2 25.7 1.3º 104º Jan-Dec 2000 1 (Balasubramanian et al. 2003) 
BOTSALANAO SOUTH AFRICA 10.5 4.9 -25.5º 25.8º July 2006-July2007 1 (Laakso et al. 2008) 

AEA SRI LANKA 28.4 12.1 6.9º 79.9º 2002-2005 1 (Hopke et al. 2008); 
KAOHSIUNG TAIWAN 68 32.6 22.6º 120.3º Nov 1998-Apr 1999 6 (Lin 2002) 
BANGKOK THAILAND 23.8 24.1 13.8º 100.5º 2002-2005 1 (Hopke et al. 2008) 

PATHUM THANI THAILAND 20 19.4 14º 100.5º 2003-2005 1 (Hopke et al. 2008) 
ISTANBUL TURKEY 20.8 17.6 41º 28.6º Jul 2002 - Jul 2003 1 (Karaca et al. 2005; Karaca et al. 2008) 
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HANOI VIETNAM 53.3 49.5 21º 105.8º
Jan - Dec 

2001;2001-
2004;2002-2005 

1;1;1 (Cohen et al. 2002);(Oanh et al. 
2006);(Hopke et al. 2008) 
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Table S-2: Comparison of simulated and satellite-derived PM2.5 with ground-based measurements.a     
 

Region Data Source 
Sampling 
Resolution slope 

bias 
[µg/m3] r n 

Satellite 0.1º × 0.1º 1.07 -1.75 0.77 1057 
 2º × 2.5º 0.94 0.38 0.82 190 

North Americab,e 
 

Simulation 2º × 2.5º 1.26 -3.14 0.87 190 
Satellite 0.1º × 0.1º 1.20 -3.40 0.74 798 

 2º × 2.5º 1.04 -1.54 0.83 117 
E. North Americab,e 

Simulation 2º × 2.5º 1.34 -3.80 0.92 117 
Satellite 0.1º × 0.1º 0.69 1.39 0.67 259 

 2º × 2.5º 0.83 0.76 0.53 73 
W. North Americab,e 

Simulation 2º × 2.5º 0.49 2.40 0.40 73 
Satellite 0.1º × 0.1º 0.86 1.15 0.83 244 

 2º × 2.5º 0.59 4.37 0.75 244 
Globalc,e 

Simulation 2º × 2.5º 0.54 8.89 0.63 244 
Satellite 0.1º × 0.1º 0.91 -2.64 0.83 84 

 2º × 2.5º 0.64 0.78 0.76 84 
Global (non-EU)d,e 

Simulation 2º × 2.5º 0.60 2.45 0.72 84 
a All PM2.5 data are averaged within the sampling resolution.  A minimum of 50 measurements for each 
point. 
b North American ground measurements are coincidently sampled with both satellite and simulated values. 
c Global excludes North American sites. 
d Global (non-EU) additionally excludes European sites. 
e NA and Global comparisons are conducted at 35% and 50% relative humidity, respectively, for 
appropriate comparison with ground measurements. 
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Figure Legends 

Figure S-1: Sample of albedo ratio zones, or surface types, used for AOD filtration.  The 
top panel shows zone definitions for July.  Marker positions and colors indicate 
AERONET locations and zones.  Acceptable agreement (within 0.1 or 20%) of 
AERONET and MODIS (+), MISR (×) or both (*) AOD retrievals is shown at each site.  
An ‘o’ indicates neither satellite retrieval meets this criteria.  The bottom row compares 
AERONET and unfiltered satellite AOD for all months within the predominant zones.  
MODIS AOD are denoted by blue ‘+’ and MISR AOD by red ‘×’.  Agreement of 0.1 or 
20% lie within the black dotted lines. 

Figure S-2: Number of months remaining from the MODIS and MISR AOD retrievals 
after filtering to remove bias.  Points denote AERONET stations used for bias 
identification. 

Figure S-3: Vertically-resolved aerosol optical depth (AOD) from the top of the 
atmosphere to the given altitude (z).  Red lines show values retrieved from the CALIPSO 
(CAL) satellite instrument over June-December 2006.  Blue lines show values simulated 
with GEOS-Chem (GC) and sampled coincidently with CALIPSO.  Cyan lines denote 
simulated mixed layer height.  Percentages give fraction of AOD within the mixed layer.  
Regions are defined in Figure 6 of the main article.  Error bars give one standard 
deviation. 

Figure S-4: Comparison of coincidently sampled satellite-estimated and simulated PM2.5.  
Satellite-estimated PM2.5 has been degraded to a resolution of 2º × 2.5º. 
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Figure S-1: Sample of albedo ratio zones, or surface types, used for AOD filtration.  The 
top panel shows zone definitions for July.  Marker positions and colors indicate 
AERONET locations and zones.  Acceptable agreement (within 0.1 or 20%) of 
AERONET and MODIS (+), MISR (×) or both (*) AOD retrievals is shown at each site.  
An ‘o’ indicates neither satellite retrieval meets this criteria.  The bottom row compares 
AERONET and unfiltered satellite AOD for all months within the predominant zones.  
MODIS AOD are denoted by blue ‘+’ and MISR AOD by red ‘×’.  Agreement of 0.1 or 
20% lie within the black dotted lines. 
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Figure S-2: Number of months of MODIS and MISR AOD included in satellite-derived 
PM2.5 estimate.  Points denote AERONET stations used for bias identification. 
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Figure S-3: Vertically-resolved aerosol optical depth (AOD) from the top of the 
atmosphere to the given altitude (z).  Red lines show values retrieved from the CALIPSO 
(CAL) satellite instrument over June-December 2006.  Blue lines show values simulated 
with GEOS-Chem (GC) and sampled coincidently with CALIPSO.  Cyan lines denote 
simulated mixed layer height.  Percentages give fraction of AOD within the mixed layer.  
Regions are defined in Figure 6 of the main article.  Error bars give one standard 
deviation. 
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Figure S-4: Comparison of coincidently sampled satellite-estimated and simulated PM2.5.  
Satellite-estimated PM2.5 has been degraded to a resolution of 2º × 2.5º. 
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